MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
DE ANCELMO LUIZ GRACELI [BRASILEIRO].
FÍSICA GRACELI DIMENSIONAL.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / [DR] = = .= + G+ * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.
* *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* . / f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ [ ]
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
= temperatura.
] / ] / .=
. ] .=
/ ] .=
]/ ] .=
]/ ] .=
]/ .= ]
/ ]] .=
]]/ ] .=
] .=
]// ] .=
]/ ] / ] .=
]] / =
] / ]=
A equação de Born-Landé fornece o valor da energia reticular de um composto iônico. Em 1918[1] Max Born e Alfred Landé propuseram que a energia da rede cristalina poderia ser derivada a partir do potencial eletrostático da rede iônica e do termo de energia potencial repulsiva.[2]
- (Joules/mol)
onde
- = número de Avogadro
- = constante de Madelung, relacionada com a geometria do cristal.
- = carga do cátions em unidade eletrostática
- = carga do ânion em unidade eletrostática
- = carga elementar, 1,6022×10−19 C
- = permissividade, = 8,8541878176×10−12 F m
- = distância do íon mais próximo em metros
- = expoente de Born, um número entre 5 e 12, determinado experimentalmente pela medida de compressibilidade do sólido ou derivado teoricamente.[3]
Energias de retículos
[editar | editar código-fonte]Os valores fornecidos pela equação de Born-Landé resultam em valores razoáveis para a energia de retículo[2]
Composto | Energia de retículo calculado | Energia de retículo medida experimentalmente |
---|---|---|
NaCl | −756 kJ/mol | −787 kJ/mol |
LiF | −1007 kJ/mol | −1046 kJ/mol |
CaCl2 | −2170 kJ/mol | −2255 kJ/mol |
Comentários
Enviar um comentário